Successive variational mode decomposition and blind source separation based on salp swarm optimization for bearing fault diagnosis

نویسندگان

چکیده

In this paper, we are interested in developing a new approach that combines successive variational mode decomposition and blind source separation based on salp swarm optimization for bearing fault diagnosis. Firstly, vibration signals pre-processed using to increase the signal-to-noise ratio. Then, dynamic time-warping algorithm is adopted select most effective modes which will be considered mixture signals. second step, apply (SSA) estimating de-mixing matrix extract independent components from However, SSA suffers problem of population diversity. Consequently, it offers somewhat different sources at every execution program. To overcome shortcoming, SSA-based estimation executed several times with ranges initial positions. fuzzy C-mean introduced reliable components. The suggested method tested two experiments compared state-of-the-art methods. obtained results demonstrate effectiveness recovering extracting frequency bearings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Underdetermined Blind Source Separation with Variational Mode Decomposition for Compound Roller Bearing Fault Signals

In the condition monitoring of roller bearings, the measured signals are often compounded due to the unknown multi-vibration sources and complex transfer paths. Moreover, the sensors are limited in particular locations and numbers. Thus, this is a problem of underdetermined blind source separation for the vibration sources estimation, which makes it difficult to extract fault features exactly b...

متن کامل

A Compound Fault Diagnosis for Rolling Bearings Method Based on Blind Source Separation and Ensemble Empirical Mode Decomposition

A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals' separation, the pre...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Advanced Manufacturing Technology

سال: 2023

ISSN: ['1433-3015', '0268-3768']

DOI: https://doi.org/10.1007/s00170-023-10968-3